Time-Displaced Correlation Functions in an Infinite One-Dimensional Mixture of Hard Rods with Different Diameters
نویسندگان
چکیده
Time-displaced conditional distribution functions are calculated for an infinite, one-dimensional mixture of equal-mass hard rods of different diameters. The kinetic equation that describes the time dependence of the one-particle total distribution function is found to be non-Markovian, in contrast with the situation in systems of identical rods. The correlation function does not contain any isolated damped oscillation, except for systems of equal-diameter rods with discrete velocities. Thus, we generalize the one-component results of Lebowitz, Percus, and Sykes, removing some nontypical features of that system.
منابع مشابه
Fundamental measure density functional theory for nonadditive hard-core mixtures: the one-dimensional case.
We treat a one-dimensional binary mixture of hard-core particles that possess nonadditive diameters. For this model, a density functional theory is constructed following similar principles as an earlier extension of Rosenfeld's fundamental measure theory to three-dimensional nonadditive hard-sphere mixtures. The theory applies to arbitrary positive and moderate negative nonadditivity and reduce...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملBerry phase for a particle in an infinite spherical potential well with moving wall
In this paper we calculate the Berry phase for a wave function of a particle in an infinite spherical potential well with adiabatically varying. In order to do this, we need the solutions of the corresponding Schrödinger equation with a time dependent Hamiltonian. Here, we obtain these solutions for the first time. In addition, we calculate the Berry phase in one dimensional case for an infinit...
متن کاملAnalytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder
An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...
متن کامل